
!

!

!

!

!

!

Distributed and Outsourced Software

Engineering

!"#$%&%'()*&+"(,(-%./$0#1&/%(./$(21*+"%13(

1. Description
!

Grade European Master in Software Engineering

Module N/A

Area Advanced Software Engineering Aspects

Subject Distributed and Outsourced Software Engineering

Type Elective

ECTS credits 4 ECTS

Responsible
department Software Engineering

Major/Section/ N/A

!

Academic year 2012/2013

Term 1st term

Language English

Web site N/A

!

!

!

!

!

!

!

2. Faculty
!

NAME and SURNAME OFFICE email

Natalia Juristo (Coord.) D-5104 natalia@fi.upm.es

Oscar Dieste D-6203 odieste@fi.upm.es

!

3. Prior knowledge required to take the subject
!

Passed subjects N/A

Other required
learning outcomes N/A

!

!

!

!

!

!

!

4. Learning goals
!

!

SUBJECT-SPECIFIC COMPETENCES AND PROFICIENCY LEVEL

Code Competence Level

CE13 Get exposed to Software Engineering’s emergent aspects,
and gain deep knowledge of some of them

K

CE14
Understand what actual Software Engineering practices can
and cannot achieve, their limitations and potential future
evolution

K

"#$%&'&()'*!+(,(+-!.)$/+(01(!2345!'$67#(8()9&$) 2:45!;77+&';<&$)!2=45!;)0!;);+*9&9!;)0!9*)<8(9&9!2>4!

!
!

SUBJECT LEARNING OUTCOMES

Code Learning outcome Related
competences

Profi-
ciency
level

LR1
The student will be able to plan, manage
and execute a distributed software
development project

CE13 K

LR2
The student will be able to assess the pros
and cons of several technologies for
distributed development

CE14 K

"#$%&'&()'*!+(,(+-!.)$/+(01(!2345!'$67#(8()9&$) 2:45!;77+&';<&$)!2=45!;)0!;);+*9&9!;)0!9*)<8(9&9!2>4!

!

!

!

!

!

!

5. Subject assessment system
!

ACHIEVEMENT INDICATORS

Ref Indicator
Related to

LR

I1 Create a vision document LR1

I2 Create a SRS document LR1

I3 Create an API/contract document LR1

I4 Develop a non-functional version of a software system LR1

I5 Develop a functional (/tested) version of a software system LR1

I6 Report, by means of an oral presentation, the project
challenges and the way they were solved

LR2

!

!

CONTINUOUS ASSESSMENT

Brief description of assessable activities Time Place

Weight
in

grade

Creation of a vision document 4th Week
Moodle &
classroom

10%

Creation of SRS document 6th Week
Moodle &
classroom

15%

Creation of an API/contract document 7th Week
Moodle &
classroom

25%

Development of a non-functional version of
a software system

11th Week
Moodle &
classroom

10%

Development of a functional (/tested)
version of a software system

13th Week
Moodle &
classroom

25%

Reporting the project challenges and the
way they were solved

14th – 15th
Week

Moodle &
classroom

15%

Total: 100%
!

!

!

!

!

!

!

!

!

!

GRADING CRITERIA

• Students will be evaluated using the assignments only. Those assignments are
particular deliverables of a course’s software development project in which
students participate.

• The assessment of assignments will depend on (1) presentation made by the
students at the classroom and (2) the correctness of the results.

• The final grade will be calculated using a weighted average as described before
(for the students who passed the exam).

!

!

!

!

!

!

5. Contents and learning activities
!

SPECIFIC CONTENTS

Unit / Topic /
Chapter Section

Related
indicators

Introduction to
distributed software
engineering

This unit introduces distributed software
development, highlighting the differences
with traditional development

I6

Requirements for
distributed software
engineering

This unit introduces the tools and
techniques to create requirements
specifications created by distributed teams

I1, I2

Design by contract

This unit introduces the approach of
“Design by contract”, which eases the
development of software created by
distributed teams

I3

Development with
Eiffel

This unit describes the Eiffel language.
Eiffel supports the “Design by contract”
approach. This language will be used for
the development of the course’s software
development project

I5

QA for distributed
software
engineering

This unit introduces the tools and
techniques to perform QA on software
systems created by distributed teams

I4

!

!

!

!

!

!

6. Brief description of organizational modalities and
teaching methods

TEACHING ORGANIZATION

Scenario Organizational Modality Purpose

 Theory Classes Talk to students

 Seminars/Workshops Construct knowledge
through student

interaction and activity

 Practical Classes Show students what to
do

 Placements Round out student
training in a professional

setting

 Personal Tutoring Give students
personalized attention

 Group Work Get students to learn
from each other

 Independent Work Develop self-learning
ability

!

!

!

!

!

!

!

!
"!

BRIEF DESCRIPTION OF THE ORGANIZATIONAL MODALITIES AND
TEACHING METHODS

THEORY CLASSES !

PROBLEM-SOLVING
CLASSES

!

PRACTICAL WORK !

INDIVIDUAL WORK !

GROUP WORK !

PERSONAL
TUTORING !

!

!

!

!

!

!

!
#$!

7. Teaching resources
!

!"#$%&'()*"+,-*$"+!

RECOMMENDED
READING

Distributed and outsourced software engineering is a novel topic
and no one book provides a good coverage of the topic. Specific
readings will be published progressively at moodle.

WEB RESOURCES Moodle (TBD)

EQUIPMENT

Laboratory: N/A

Room: 6202

Group work room: School facilities

!

!

!

!

!

!

!

!

!
""!

8. Subject schedule
Week Classroom activities Lab

activities
Individual

work
Group work Assessment

activities
Others

1-3 Lectures: Introduction to distributed software
engineering (6 hours) - - - - -

4-6

Lectures: Requirements for distributed
software engineering (4 hours)

Students: presentation (2 hours)

- -
Create the vision document (4 hours)

Create the SRS document (8 hours)

Presentation in the
classroom -

7
Lectures: Design by contract (2 hours)

Students: presentation (2 hours)
- - Create the API/contract document (10

hours)
Presentation in the

classroom -

8-11
Lectures: Development with Eiffel (6 hours)

Students: presentation (2 hours)
- -

Develop a non-functional version of a
software system (30 hours)

Presentation in the
classroom -

12-13

Lectures: QA for distributed software
engineering (4 hours)

Students: presentation (2 hours)

- -
Develop a functional (/tested) version
of a software system (15 hours)

Presentation in the
classroom -

14-15 Students: report the project challenges and
the way they were solved (4 hours) - - Prepare a presentation (6 hours) Presentation in the

classroom -

16 Wrap up (1 hours) - - - - -

#$%&'!(%)*&+%!,$-./$0*!12&3454&*!5$-!&036!03%474%8!4+!6$)-1

