

(Sistemas Digitales)

Guía de Aprendizaje – Información al estudiante Semestre: Septiembre 2010 – Enero 2011

1.Datos Descriptivos

Asignatura	Sistemas Digitales
Materia	Informática
Departamento responsable	Arquitectura y Tecnología de Sistemas Informáticos
Créditos ECTS	6
Carácter	Básico
Titulación	Graduado/a en Ingeniería Informática por la Universidad Politécnica de Madrid
Curso	1°
Especialidad	No aplica

Curso académico	2010-2011
Semestre en que se imparte	Ambos (Septiembre a enero y febrero a junio)
Semestre principal	Febrero a junio
Idioma en que se imparte	Castellano
Página Web	http://tamarisco.datsi.fi.upm.es/ASIGNATURAS/SD/

2.Profesorado

NOMBRE Y APELLIDO	DESPACHO	Correo electrónico
Agueda Arquero Hidalgo (Coord.)	4210	aarquero@fi.upm.es
Consuelo Gonzalo Martín	4207	chelo@fi.upm.es
Mariano Hermida de la Rica	4208	mariano@olivo.datsi.fi.upm.es
Estíbaliz Martínez Izquierdo	4210	emartinez@fi.upm.es
Margarita Pérez Castellanos	4207	marga@fi.upm.es
Victoria Rodellar Biarge	4205	victoria@pino.datsi.fi.upm.es

3. Conocimientos previos requeridos para poder seguir con normalidad la asignatura

Asignaturas superadas	Fundamentos Físicos y Tecnológicos de la Informática
Otros resultados de aprendizaje necesarios	Algebra de Boole

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

4. Objetivos de Aprendizaje

СОМРЕ	COMPETENCIAS ASIGNADAS A LA ASIGNATURA Y SU NIVEL DE ADQUISICIÓN		
Código	Competencia	Nivel	
CE2	Formalización y la especificación de problemas reales cuya solución requiere el uso de la informática.	3	
CE5	Capacidad de diseñar y realizar experimentos apropiados, interpretar los datos y extraer conclusiones.	4	
CE7	Entender el soporte físico (hardware) de los ordenadores desde el punto de vista del soporte lógico (software), por ejemplo, el uso del procesador, de la memoria, de los discos, del monitor, etc.	4	
CE10	Concebir y desarrollar sistemas digitales utilizando lenguajes de descripción hardware.	4	

LEYENDA: Nivel de competencia: Conocimiento (1), compresión (2), aplicación (3), análisis y síntesis (4)

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

F	RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA			
Código	Resultado de aprendizaje	Competen- cias asociadas	Nivel de adquisi- ción	
RA1	Capacidad para la resolución de problemas de análisis y diseño en el ámbito de la electrónica digital, relativos a sistema digitales realizados en tecnología CMOS	CE2	3	
RA2	Capacidad para diseñar, realizar experimentos, y analizar e interpretar resultados	CE5	4	
RA3	Conocimiento de las partes integrantes del soporte físico (hardware) de los ordenadores	CE7	4	
RA4	Analizar, modelar y simular sistemas digitales mediante lenguajes de descripción hardware	CE10	4	

LEYENDA: Nivel de competencia: Conocimiento (1), compresión (2), aplicación (3), análisis y síntesis (4)

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

5. Sistema de evaluación de la asignatura

	INDICADORES DE LOGRO		
Ref	Indicador	Relacionado con RA	
l1	Identificar características eléctricas y niveles lógicos de sistemas digitales.	RA1	
12	Conocer, diseñar e implementar subsistemas combinacionales básicos y realizar medidas físicas sobre ellos.	RA1, RA2,RA3	
13	Conocer el concepto de biestable.	RA3	
14	Conocer, diseñar e implementar estructuras básicas para el registro de la información.	RA1, RA2,RA3	
15	Conocer, diseñar e implementar sistemas secuenciales síncronos.	RA1, RA2,RA3	
16	Conocer los sistemas de representación numérica posicional.	RA3	
17	Conocer, diseñar e implementar estructuras básicas para la realización de operaciones aritméticas y lógicas.	RA2,RA3	
18	Conocer la organización y funcionamiento de los dispositivos de almacenamiento de solo lectura y de lectura/escritura.	RA1,RA3	
19	Realizar modelos y simulaciones de sistemas digitales usando lenguajes de descripción hardware.	RA3, RA4	
l10	Identificar las jerarquías en sistemas digitales y sus niveles de descripción asociados.	RA3	
l11	Hacer modelos de sistema digitales a distintos niveles de descripción.	RA4	
l12	Manejar herramientas CAD y entender la simulación orientada a eventos.	RA4	
l13	Diseñar test para comprobar la funcionalidad de los diseños.	RA4	

EVALUACION SUMATIVA			
Breve descripción de las actividades evaluables	Momento	Lugar	Peso en la calif.
Resolución y entrega de ejercicios en Moodle	Semanas de la 1 a la 16	Moodle	10%
Resolución y entrega de problemas.	Semanas de la 1 a la 16	Clase/trabajo personal	10%
Realización y memoria práctica S1. Tutorial del entorno de simulación de Veribest. Modelado y simulación de puertas lógicas y circuitos combinacionales sencillos.	Semana 5	Aulas Centro de calculo	6%
Realización y memoria práctica L1: Introducción al uso de circuitos LSI. Medida de retardos en puertas lógicas, implementación de circuitos combinacionales sencillos.	Semana 6	Laboratorio de Electrónica	6%
Evaluación Tema 1, Tema 2, Tema 3	Semana 8	Clase	25%
Realización y memoria práctica S2. Modelado de elementos de almacenamiento	Semana 10	Aulas centro de cálculo	6%
Memoria práctica L2. Realización de elementos de almacenamiento	Semana 11	Laboratorio de Electrónica	6%
Realización y memoria práctica S3. Modelado de una FSM según los modelos de Mealy y Moore.	Semana 14	Aulas centro de cálculo	6%
Evaluación Tema 4, Tema 5 y Tema 6	Semana 16	Clase	25%
Total: 100%			

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

CRITERIOS DE CALIFICACIÓN

Boadilla del Monte. 28660 Madrid

SISTEMA GENERAL DE EVALUACION CONTINUA

La asignatura se superará cuando se obtenga 5 o más puntos sobre un total de 10, según las normas que se indican a continuación.

NOTA FINAL = 20% Trabajo personal +

+ 50% Controles conocimientos +

+ 30% Prácticas Laboratorio

La calificación final se obtendrá a partir de tres componentes: El trabajo personal del alumno, las notas obtenidas en los controles de los temas y prácticas, las notas obtenidas en la realización de prácticas y las memorias de laboratorio. La valoración máxima de cada una de ellas, la calificación mínima para compensar las partes no superadas, y la opción de examen final se indican en la tabla adjunta.

PARTES Y PORCENTAJES	VALORACIÓN MAXIMA Puntos sobre el porcentaje de cada parte	CALIFICACIÓN MINIMA PARA COMPENSAR LAS PARTES NO SUPERADAS (40 % de la valoración máxima)	CALIFICACION MINIMA PARA TENER OPCIÓN A EXAMEN FINAL (30% de la valoración máxima)
Trabajo personal del alumno: Ejercicios, cuestionarios y problemas. (20 %)	2	0,8	0,6
Controles de conocimientos del temario: Parciales y global. (50 %)	5	2	1,5
Prácticas de Laboratorio: Montajes y simulación. (30 %) (*)	3	1,2	0,9

(*) La calificación minima de las memorias y trabajos de laboratorio deberá ser de 4 puntos sobre 10.

No se guardaran partes aprobadas para semestres posteriores

SISTEMA DE EVALUACION MEDIANTE SÓLO PRUEBA FINAL

Υ

PERIODO EXTRAORDINARIO

El Sistema de evaluación mediante sólo prueba final sólo se ofrecerá si así lo exige la Normativa Reguladora de los Sistemas de Evaluación en la UPM que esté vigente en el curso académico 2010-2011, y el procedimiento para optar por este sistema estará sujeto a lo que establezca en su caso Jefatura de Estudios de conformidad con lo que estipule dicha Normativa.

La asignatura se superará cuando se obtenga 5 o más puntos sobre un total de 10, según las normas que se indican a continuación:

NOTA FINAL = 70% Examen final + 30% Prácticas Laboratorio

Siendo requisito imprescindible que se obtenga un mínimo de 4 puntos en cualquiera de las dos partes para que puedan ser compensables entre si.

ENTREGA DE PRÁCTICAS:

OPCIÓN-1: Los alumnos <u>podrán</u> realizar y entregar, todas las memorias y trabajos de prácticas propuestos para los alumnos que hayan seguido el método general de evaluación continua en el momento que se les solicite a éstos.

OPCIÓN-2: Los alumnos que no hayan seguido la OPCION-1, <u>deberán</u> entregar el mismo día de la prueba final, todas las memorias y trabajos de prácticas propuestos para los alumnos que hayan seguido el método general de evaluación continua.

Con posterioridad a la fecha de la prueba final, se les convocará a un examen de prácticas en el que deberán realizar montajes de circuitos en el laboratorio de electrónica y programar modelos de componentes en las aulas del centro de cálculo.

No se guardaran partes aprobadas para semestres posteriores

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

Contenidos y Actividades de Aprendizaje

CONTENIDOS ESPECÍFICOS			
Bloque / Tema / Capítulo	Apartado	Indicadores Relaciona- dos	
	1.1 Introducción.	l1	
	1.2 Analógico versus digital	I 1	
	1.3 Tensiones y niveles lógicos. Retardos y fanout. Puertas básicas CMOS. Salidas triestado	I1	
Tema 1: Conceptos Básicos y herramientas CAD	1.4 Sistemas numéricos posicionales:Binario, octal, hexadecimal y BCD. Código ASCII	16	
nerramentas GAD	1.5 Herramientas de diseño	l12	
	1.6 Introducción al lenguaje de descripción hardware VHDL, unidades de diseño, caracterización de señales y retardos. Representación de la información: Identificadores, palabras reservadas, tipos de objetos, datos y operadores	l12	
	2.1 Representación de redes lógicas	l2	
	2.2 Axiomas y Teoremas del Algebra de Boole. Dualidad y formas canónicas	12	
Tema 2. Circuitos	2.3 Simplificación de funciones. Mapas de Karnaugh	12	
combinacionales	2.4 Multiplexores y demultiplexores	12	
	2.5 Codificadores y decodificadores	12	
	2.6 Comparadores	12	
	2.7 Sentencias concurrentes y secuenciales en VHDL.	I11 I13	
Tema 3. Sistemas aritméticos básicos	3.1 Aritmética entera con signo. Signo magnitud. Complemento a dos. Extensión de signo	16	

	3.2 Semisumador y sumador completo	17
	3.3 Sumador/restador en complemento a dos. Detección del desbordamiento.	17
	3.4. Ejemplo de ALU	17
	4.1 Sistemas síncronos y asíncronos. Relojes	13
	4.2 Almacenamiento estático de la información. Latches y biestables	13
Tema 4. Registro de la información	4.3 Especificaciones de los biestables. Frecuencia máxima, tiempos de set-up y hold	13
	4.4 Registros y pilas	14
	4.5 Contadores	14
	4.6 Almacenamiento dinámico de la información	14
	5.1 Definición de sistema secuencial	I 5
	5.2 Concepto de estado. Máquina de estados finitos (FSM)	15
Tema 5. Sistemas Secuenciales	5.3 Autómatas de Mealy y Moore	I 5
Síncronos	5.4 Especificación y etapas de diseño de sistemas secuenciales.	15
	5.5 Modelos de máquinas FSM en VHDL	19 110
	6.1 Jerarquías	18
	6.2 Tipos. Clasificación	18
Tema 6. Memorias	6.3 ROM. Estructura interna. Temporización y control.	18
	6.4 RAM. Estáticas, dinámicas, temporización y control. Flash	18
Prácticas de Simulación de circuitos	S.1 Tutorial del entorno de simulación de Veribest. Modelado y simulación de puertas lógicas y circuitos combinacionales sencillos.	I2, I9, I10,I11, I12,I13
	S.2 Modelado de elementos de memoria	I4, I9, I10,I11,

		l12,l13
	S.3 Modelado de una FSM según los modelos de Mealy y Moore.	I5, I9, I10,I11, I12,I13
Prácticas de realización física de circuitos	L.1 Introducción al uso de circuitos LSI. Medida de retardos en puertas lógicas, implementación de circuitos combinacionales sencillos.	l2
	L.2 Realización de elementos de memoria	17

Boadilla del Monte. 28660 Madrid

6.Breve descripción de las modalidades organizativas utilizadas y de los métodos de enseñanza empleados

Table 7. Modelidades organizativas de la enseñanza							
MODALIDADES ORGANIZATIVAS DE LA ENSEÑANZA							
Escenario Modalidad Finalidad							
	Clases Teóricas	Hablar a los estudiantes					
	Seminarios-Talleres	Construir conocimiento a través de la interacción y la actividad de los estudiantes					
ନ୍ଧି ନ ବୁଣ ଝନ୍ତ୍ର	Clases Prácticas	Mostrar a los estudiantes cómo deben actuar					
	Prácticas Externas	Completar la formación de los alumnos en un contexto profesional					
	Tutorías	Atención personalizada a los estudiantes					
53	Trabajo en grupo	Hacer que los estudiantes aprendan entre ellos					
	Trabajo autónomo	Desarrollar la capacidad de autoaprendizaje					

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

	itodos		

Tabla 9. Métodos de enseñanza							
MÉTODOS DE ENSEÑANZA							
	Método Finalidad						
	Método Expositivo/Lección Magistral	Transmitir conocimientos y activar procesos cognitivos en el estudiante					
••••	Estudio de Casos	Adquisición de aprendizajes mediante el análisis de casos reales o simulados					
	Resolución de Ejercicios y Problemas	Ejercitar, ensayar y poner en práctica los conocimientos previos					
□ →	Aprendizaje Basado en Problemas (ABP)	Desarrollar aprendizajes activos a través de la resolución de problemas					
	Aprendizaje orientado a Proyectos	Realización de un proyecto para la resolución de un problema, aplicando habilidades y conocimientos adquiridos					
$\times\!$	Aprendizaje Cooperativo	Desarrollar aprendizajes activos y significativos de forma cooperativa					
\rightarrow	Contrato de Aprendizaje	Desarrollar el aprendizaje autónomo					

Se conoce como método expositivo "la presentación de un tema lógicamente estructurado con la finalidad de facilitar información organizada siguiendo criterios adecuados a la finalidad pretendida". Esta metodología -también conocida como lección (lecture)- se centra fundamentalmente en la exposición verbal por parte del profesor de los contenidos sobre la materia objeto de estudio. El término "lección magistral" se suele utilizar para denominar un tipo específico de lección impartida por un profesor en ocasiones especiales.

Análisis intensivo y completo de un hecho, problema o suceso real con la finalidad de conocerlo, interpretarlo, resolverlo, generar hipótesis, contrastar datos, reflexionar, completar conocimientos, diagnosticarlo y, en ocasiones, entrenarse en los posibles procedimientos alternativos de solución.

Situaciones en las que se solicita a los estudiantes que desarrollen las soluciones adecuadas o correctas mediante la ejercitación de rutinas, la aplicación de fórmulas o algoritmos, la aplicación de procedimientos de transformación de la información disponible y la interpretación de los resultados. Se suele utilizar como complemento de la lección magistral.

Método de enseñanza-aprendizaje cuyo punto de partida es un problema que, diseñado por el profesor, el estudiante ha de resolver para desarrollar determinadas competencias previamente definidas.

Método de enseñanza-aprendizaje en el que los estudiantes llevan a cabo la realización de un proyecto en un tiempo determinado para resolver un problema o abordar una tarea mediante la planificación, diseño y realización de una serie de actividades, y todo ello a partir del desarrollo y aplicación de aprendizajes adquiridos y del uso efectivo de recursos.

Enfoque interactivo de organización del trabajo en el aula en el cual los alumnos son responsables de su aprendizaje y del de sus compañeros en una estrategia de corresponsabilidad para alcanzar metas e incentivos grupales.

Es tanto un método, a utilizar entre otros, como un enfoque global de la enseñanza, una filosofía.

Un acuerdo establecido entre el profesor y el estudiante para la consecución de unos aprendizajes a través de una propuesta de trabajo autónomo, con una supervisión por parte del profesor y durante un período determinado. En el contrato de aprendizaje es básico un acuerdo formalizado, una relación de contraprestación recíproca, una implicación personal y un marco temporal de ejecución.

UNIVERSIDAD POLITÉCNICA DE MADRID FACULTAD DE INFORMÁTICA Campus de Montegancedo Boadilla del Monte. 28660 Madrid

BREVE DESCRIPCIÓN DE LAS MODALIDADES ORGANIZATIVAS UTILIZADAS Y METODOS DE ENSEÑANZA EMPLEADOS					
CLASES DE TEORIA	Se utilizará la lección magistral para la exposición verbal de los contenidos, apoyándose en recursos audiovisuales.				
CLASES DE PROBLEMAS	El profesor resolverá en la clase, problemas "tipo" de cada tema que, servirán para aplicar los conocimientos adquiridos en las clases de teoría.				
PRÁCTICAS El alumno deberá resolver, simular en las aulas in del centro de cálculo e implementar físicamente el laboratorio de electrónica, problemas que cumplar determinadas especificaciones. El profesor hará u introducción al problema y al método de solución, de ello, el alumno deberá desarrollar la solución cindique en un guión.					
TRABAJOS AUTONOMOS	Los alumnos deberán realizar ejercicios y problemas para practicar y afianzar los conocimientos aprendidos.				
TRABAJOS EN GRUPO					
TUTORÍAS	Los alumnos podrán hacer uso de tutorías personalizadas, cuando lo soliciten al profesor.				

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

7. Recursos didácticos

	RECURSOS DIDÁCTICOS						
	Fundamentals of Digital Logic with VHDL Design, 3/e Stephen Brown y Zvonko Vranesic - McGraw-Hill 2009						
	Fundamentos de sistemas digitales T. L. Floyd – Pearson Education 2006						
BIBLIOGRAFÍA	Sistemas Digitales A. Lloris, A. Prieto y L. Parrilla – McGraw-Hill 2003						
	Vhdl. lenguaje para síntesis y modelado de circuitos. 2ª edición F. Pardo y J. Boluda – Ed. Rama 2003						
	Diseño de Sistemas Digitales con VHDL S. A. Pérez, E. Soto y S. Fernández – Ed Thomson 2003						
	Página web de la asignatura						
	http://tamarisco.datsi.fi.upm.es/ASIGNATURAS/SD/						
RECURSOS WEB	Sitio Moodle de la asignatura						
	(http://web3.fi.pm.es/AulaVirtual)						
	Laboratorio de electrónica. Planta baja. Bloque 4						
EQUIPAMIENTO	Aula computadores personales del centro de cálculo asignada por Jefatura de Estudios						
	Aula de clase asignada por Jefatura de Estudios						

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

8. Cronograma de trabajo de la asignatura

Semana	Actividades en Aula	Actividades en Laboratorio	Trabajo Individual	Trabajo en Grupo	Actividades de Evaluación	Otros
Semana 1 (6 horas)	 Presentación de la asignatura y utilización de Moodle (1h) Tema 1. Conceptos Básicos y herramientas CAD. Ejercicios y problemas (4h) 		Cuestionario preliminar mediante Moodle (1h)			
Semana 2 (9 horas)	Tema 1. Conceptos Básicos y herramientas CAD. Ejercicios y problemas (5h)		Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (4h)			
Semana 3 (9 horas)	Tema 1. Conceptos Básicos y herramientas CAD. Ejercicios y problemas (5h)		Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (4h)		Ejercicios y problemas propuestos	
Semana 4 (9 horas)	Tema 2. Circuitos combinacionales básicos. Ejercicios y problemas (5h)		Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (4h)			

Semana 5 (10 horas)	Tema 2. Circuitos combinacionales básicos. Ejercicios y problemas (2h)	●S-1: Tutorial del entorno de simulación de Veribest. Modelado y simulación de puertas lógicas y circuitos combinacionales sencillos. (3h) Aulas informáticas Centro de Calculo	 Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (2h) Realización de la memoria de la práctica (3h) 		
Semana 6 (10 horas)	Tema 2. Circuitos combinacionales básicos. Ejercicios y problemas (2h)	 L-1: Introducción al uso de circuitos LSI. Medida de retardos en puertas lógicas, implementación de circuitos combinacionales sencillos. (3h) Laboratorio de Electrónica 	 Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (4h) Realización de la memoria de la práctica (1h) 	Ejercicios y problemas propuestos	
Semana 7 (9 horas)	Tema 3. Sistemas Aritméticos. Ejercicios y problemas (5h)		Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (4h)	Ejercicios y problemas propuestos	

Semana 8 (18 horas)	Tema 4. Registro de la información. Ejercicios y problemas (3h)		 Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (2h) Preparación examen evaluación (11h) 	• Evaluación Temas 1, 2 y 3 (2h)	
Semana 9 (9 horas)	Tema 4. Registro de la información. Ejercicios y problemas (5h)		Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (4h)	Ejercicios y problemas propuestos	
Semana 10 (12 horas)		 S.3 Modelado de elementos de memória (5h) Aulas informáticas Centro de Calculo 	Preparación de la práctica y realización de la memoria (7h)		
Semana 11 (12 horas)		L.2 Modelado de elementos de memória (5h) Laboratorio de Electrónica	Preparación de la práctica y realización de la memoria (7h)		
Semana 12 (9 horas)	Tema 5. Sistemas Secuenciales Síncronos. Ejercicios y problemas (5h)		Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (4h)		

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

Semana 13 (9 horas)	Tema 5. Sistemas Secuenciales Síncronos. Ejercicios y problemas (5h)		Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (4h)	Ejercicios y problemas propuestos	
Semana 14 (12 horas)	Tema 6. Memorias. Ejercicios y problemas (2h)	S.4 Modelado de una FSM según los modelos de Mealy y Moore. (3h) Aulas informáticas Centro de Cálculo.	 Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (1h) Estudio preliminar y preparación de la práctica (2h) Realización de la memoria de la práctica (3h) 		
Semana 15 (7 horas)	Tema 6. Memorias. Ejercicios y problemas (5h)		Estudio, ejercicios y problemas. Resolución de ejercicios y problemas propuestos, entrega al profesor y/o mediante Moodle (2h)	Ejercicios y problemas propuestos	
Semana 16 (13 horas)	Tema 6. Memorias. Ejercicios y problemas (3h)		Preparación evaluación (10h)	Evaluación temas 4, 5 y 6 (2h)	

Nota: Para cada actividad se especifica la dedicación en horas que implica para los alumnos

