

Análisis de Fourier Discreto Guía de Aprendizaje – Información al estudiante

1.Datos Descriptivos

Asignatura	Análisis de Fourier Discreto
Materia	Optatividad
Departamento responsable	Matemática Aplicada
Créditos ECTS	3
Carácter	Optativa
Titulación	Grado de Ingeniería Informática por la Universidad Politécnica de Madrid
Curso	Tercero
Especialidad	No aplica

Curso académico	2011-2012
Semestre en que se imparte	Quinto (Septiembre a enero)
Semestre principal	Quinto (Septiembre a enero)
Idioma en que se imparte	Castellano
Página Web	http://www.dma.fi.upm.es

2.Profesorado

NOMBRE Y APELLIDO	DESPACHO	Correo electrónico
Miguel Reyes Castro (coordinador)	1305	mreyes@fi.upm.es
Mª. Asunción Sastre Rosa	1318	masastre@fi.upm.es

3. Conocimientos previos requeridos para poder seguir con normalidad la asignatura

Asignaturas superadas	ninguna
Otros resultados de aprendizaje necesarios	• ninguno

FACULTAD DE INFORMÁTICA Campus de Montegancedo Boadilla del Monte. 28660 Madrid

4. Objetivos de Aprendizaje

COMPETENCIAS ASIGNADAS A LA ASIGNATURA Y SU NIVEL DE ADQUISICIÓN		
Código	Competencia	Nivel
CE-12/16	Conocer los campos de aplicación de la informática, y tener una apreciación de la necesidad de poseer unos conocimientos técnicos profundos en ciertas áreas de aplicación; apreciación del grado de esta necesidad en, por lo menos, una situación.	2
CE-14/15	Conocer el software, hardware y las aplicaciones existentes en el mercado, así como el uso de sus elementos, y capacidad para familiarizarse con nuevas aplicaciones informáticas.	1
CE-44	Conocimiento de tecnologías punteras relevantes y su aplicación.	1
CG-1/21	Capacidad de resolución de problemas aplicando conocimientos de matemáticas, ciencias e ingeniería.	3
CG-2/CE-45	Capacidad para el aprendizaje autónomo y la actualización de conocimientos, y reconocimiento de su necesidad en el área de la informática.	3

LEYENDA: Nivel de adquisición 1: Conocimiento

Nivel de adquisición 2: Comprensión Nivel de adquisición 3: Aplicación Nivel de adquisición 4: Análisis y Síntesis

RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA			
Código	Resultado de aprendizaje	Competen- cias asociadas	Nivel de adquisi- ción
RA1	Dado un problema real elegir la tecnología existente en el mercado más apropiada para su solución y diseñar su desarrollo e integración, analizando la viabilidad de su solución, lo que se puede y no se puede conseguir a través del estado actual de desarrollo de la tecnología usada, y lo que se espera que avance en el futuro.	CE-12/16 CE-14/15 CE-44	2
RA2	Desarrollar la solución matemática y algorítmica más apropiada a un problema informático que requiera un tratamiento especialmente complejo, analizando y exponiendo su viabilidad.	CG-1/21	3
RA3	Conocer las estructuras matemáticas necesarias para el manejo de señales e imágenes: Números complejos, Espacios vectoriales, Ortogonalidad, Series de Fourier, Transformada de Fourier discreta (DFT), Transformada rápida de Fourier (FFT) y la Transformada de coseno discreta (DCT).	CG-1/21 CG-2/CE-45	3
RA4	Conocer los modelos matemáticos para las señales y las imágenes, así como las técnicas de muestreo y digitalización.	CE-12/16 CG-1/21 CG-2/CE-45	3
RA5	Utilizar el análisis de Fourier discreto en el tratamiento informático de las señales e imágenes (compresión JPEG, filtrado, detección de bordes,).	CE-12/16 CE-14/15 CE-44 CG-2/CE-45	3

5. Sistema de evaluación de la asignatura

	INDICADORES DE LOGRO		
Ref	Indicador	Relaciona- do con RA	
I 1	Conocer los números complejos, operaciones y formas exponencial y trigonométrica.	RA3	
12	Conocer la estructura de espacio vectorial dotado de un producto escalar y norma inducida, así como los conceptos de ortogonalidad y bases ortogonales y ortonormales.	RA3	
13	Conocer los modelos matemáticos para las señales e imágenes.	RA4	
14	Conocer y calcular, con algún software matemático, series de Fourier (exponenciales y trigonométricas) de funciones de una variable (señales) y de dos variables (imágenes).	RA1, RA3	
15	Manejar técnicas de muestreo y digitalización de señales e imágenes.	RA4	
16	Conocer y manejar ondas básicas (exponenciales y trigonométricas) para señales e imágenes.	RA4	
17	Aplicar técnicas de muestreo a señales e imágenes mediante algún software matemático, entendiendo los resultados obtenidos en función de las frecuencias usadas y comprendiendo los fenómenos de cuantificación y aliasing.	RA1, RA2, RA5	
18	Conocer y calcular la transformada de Fourier discreta (DFT) de señales, y su inversa.	RA3	
19	Conocer y manejar la transformada rápida de Fourier (FFT).	RA3	
I 10	Conocer y calcular la transformada de Fourier discreta (DFT) de imágenes.	RA3	
l 11	Aplicar, mediante algún software matemático, la transformada de Fourier discreta a señales e imágenes, observando los resultados obtenidos.	RA1, RA2, RA5	
I 12	Conocer y calcular la transformada de coseno discreta (DCT).	RA3	
I 13	Conocer, comprender y hacer compresión JPEG de imágenes.	RA1, RA2, RA5	

(La tabla anterior puede ser sustituida por la tabla de rúbricas)

EVALUACION SUMATIVA			
Breve descripción de las actividades evaluables	Momento	Lugar	Peso en la calif.
Realización de una prueba de respuesta larga (desarrollo) que abarcará el Tema 1 de la asignatura.	Semana 6	Aula	20%*
Realización de una prueba de respuesta larga (desarrollo) que abarcará los Temas 2 y 3 de la asignatura.	Semana 16	Aula	20%
Realización y entrega de ejercicios, algunos de ellos usando software matemático.	Semanas 1 a 15	Aula y Sala Informática	30%
Realización, entrega, exposición y defensa de 3 prácticas realizadas con software matemático.	Semanas 3, 8 y 14.	Sala Informática	30%
Total: 100%			

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

CRITERIOS DE CALIFICACIÓN

Convocatoria ordinaria

• Sistema general de evaluación continua

Las actividades evaluables son las especificadas en la tabla del apartado anterior (evaluación sumativa), cada una de ellas puntuable de 0 a 10. La nota de la asignatura se calcula según los pesos fijados en dicha tabla, y se considera aprobada la asignatura cuando se obtiene una nota mayor o igual que 5 sobre 10.

Sistema de evaluación final

Este sistema sólo se ofrecerá si así lo exige la Normativa Reguladora de los Sistemas de Evaluación de la UPM vigente en el curso 2011-2012, y el procedimiento para optar por este sistema estará sujeto a lo que establezca en su caso Jefatura de Estudios de conformidad con lo que estipule dicha Normativa.

Este sistema de evaluación mediante sólo prueba final, consistirá de:

- La realización de una prueba de respuesta larga (desarrollo) que abarcará todo el temario de la asignatura, puntuable de 0 a 10 y con peso en la nota final del 70%.
- La realización, entrega, exposición y defensa de las 3 prácticas de laboratorio propuestas en la evaluación continua para las semanas 3, 8 y 14. Estas prácticas se puntuarán de 0 a 10, y con peso en la nota final del 30%.

La nota final se obtiene con los pesos anteriores y se considera aprobada la asignatura cuando se obtiene una nota mayor o igual que 5 sobre 10.

Convocatoria extraordinaria de julio

Consistirá de:

- La realización de una prueba de respuesta larga (desarrollo) que abarcará todo el temario de la asignatura, puntuable de 0 a 10 y con peso en la nota final del 70%.
- La realización, entrega, exposición y defensa de las 3 prácticas de laboratorio propuestas en la evaluación continua para las semanas 3, 8 y 14. Estas prácticas se puntuarán de 0 a 10, y con peso en la nota final del 30%.

La nota final se obtiene con los pesos anteriores y se considera aprobada la asignatura cuando se obtiene una nota mayor o igual que 5 sobre 10.

6. Contenidos y Actividades de Aprendizaje

CONTENIDOS ESPECÍFICOS		
Bloque / Tema / Capítulo	Apartado	Indicadores Relaciona- dos
	1.1 Señales e imágenes.	13
	1.2 Números complejos.	11
Tema 1: Modelos matemáticos para señales e imágenes	1.3 Modelos matemáticos para señales e imágenes.	13,15, 16,17
	1.4 Producto escalar y ortogonalidad en espacios vectoriales.	12
	1.5 Series exponenciales y trigonométricas de Fourier.	14,17
Tema 2:	2.1 La DFT unidimensional.	I 8, I 11
La transformada de	2.2 La transformada rápida de Fourier (FFT).	I 9, I 11
Fourier discreta (DFT)	2.3 La DFT 2-dimensional.	I 10, I 11
Tema 3: La transformada de coseno discreta (DCT)	3.1 La transformada de coseno discreta (DCT).	l 12
	3.2 La DCT 2-dimensional.	I 12
	3.3 El método JPEG de compresión de imágenes	I 12, I 13

7. Breve descripción de las modalidades organizativas utilizadas y de los métodos de enseñanza empleados

Table 7. Modelidades organizativas de la enseñanza		
MODALIDADES ORGANIZATIVAS DE LA ENSEÑANZA		
Escenario	Modalidad	Finalidad
	Clases Teóricas	Hablar a los estudiantes
	Seminarios-Talleres	Construir conocimiento a través de la interacción y la actividad de los estudiantes
85 \$ 60 49.8	Clases Prácticas	Mostrar a los estudiantes cómo deben actuar
	Prácticas Externas	Completar la formación de los alumnos en un contexto profesional
	Tutorías	Atención personalizada a los estudiantes
525	Trabajo en grupo	Hacer que los estudiantes aprendan entre ellos
	Trabajo autónomo	Desarrollar la capacidad de autoaprendizaje

Campus de Montegancedo Boadilla del Monte, 28660 Madrid

Tabla 9. Métodos de enseñanza		
MÉTODOS DE ENSEÑANZA		
	Método	Finalidad
	Método Expositivo/Lección Magistral	Transmitir conocimientos y activar procesos cognitivos en el estudiante
••••	Estudio de Casos	Adquisición de aprendizajes mediante el análisis de casos reales o simulados
	Resolución de Ejercicios y Problemas	Ejercitar, ensayar y poner en práctica los conocimientos previos
□ →	Aprendizaje Basado en Problemas (ABP)	Desarrollar aprendizajes activos a través de la resolución de problemas
	Aprendizaje orientado a Proyectos	Realización de un proyecto para la resolución de un problema, aplicando habilidades y conocimientos adquiridos
$\times\!$	Aprendizaje Cooperativo	Desarrollar aprendizajes activos y significativos de forma cooperativa
\rightarrow	Contrato de Aprendizaje	Desarrollar el aprendizaje autónomo

Se conoce como método expositivo "la presentación de un tema lógicamente estructurado con la finalidad de facilitar información organizada siguiendo criterios adecuados a la finalidad pretendida". Esta metodología -también conocida como lección (lecture)- se centra fundamentalmente en la exposición verbal por parte del profesor de los contenidos sobre la materia objeto de estudio. El término "lección magistral" se suele utilizar para denominar un tipo específico de lección impartida por un profesor en ocasiones especiales.

Análisis intensivo y completo de un hecho, problema o suceso real con la finalidad de conocerlo, interpretarlo, resolverlo, generar hipótesis, contrastar datos, reflexionar, completar conocimientos, diagnosticarlo y, en ocasiones, entrenarse en los posibles procedimientos alternativos de solución.

Situaciones en las que se solicita a los estudiantes que desarrollen las soluciones adecuadas o correctas mediante la ejercitación de rutinas, la aplicación de fórmulas o algoritmos, la aplicación de procedimientos de transformación de la información disponible y la interpretación de los resultados. Se suele utilizar como complemento de la lección magistral.

Método de enseñanza-aprendizaje cuyo punto de partida es un problema que, diseñado por el profesor, el estudiante ha de resolver para desarrollar determinadas competencias previamente definidas.

Método de enseñanza-aprendizaje en el que los estudiantes llevan a cabo la realización de un proyecto en un tiempo determinado para resolver un problema o abordar una tarea mediante la planificación, diseño y realización de una serie de actividades, y todo ello a partir del desarrollo y aplicación de aprendizajes adquiridos y del uso efectivo de recursos.

Enfoque interactivo de organización del trabajo en el aula en el cual los alumnos son responsables de su aprendizaje y del de sus compañeros en una estrategia de corresponsabilidad para alcanzar metas e incentivos grupales.

Es tanto un método, a utilizar entre otros, como un enfoque global de la enseñanza, una filosofía.

Un acuerdo establecido entre el profesor y el estudiante para la consecución de unos aprendizajes a través de una propuesta de trabajo autónomo, con una supervisión por parte del profesor y durante un período determinado. En el contrato de aprendizaje es básico un acuerdo formalizado, una relación de contraprestación recíproca, una implicación personal y un marco temporal de ejecución.

BREVE DESCRIPCIÓN DE LAS MODALIDADES ORGANIZATIVAS UTILIZADAS Y METODOS DE ENSEÑANZA EMPLEADOS	
CLASES DE TEORIA Método expositivo / Lección magistral	
CLASES DE PROBLEMAS	Resolución de ejercicios y problemas Aprendizaje basado en problemas Resolución de problemas con software matemático.
PRÁCTICAS	Aplicación de técnicas matemáticas a métodos o procesos informáticos de señales e imágenes.
TRABAJOS AUTONOMOS	Aprendizaje basado en problemas
TUTORÍAS	Atención personalizada a los estudiantes

8. Recursos didácticos

RECURSOS DIDÁCTICOS						
BIBLIOGRAFÍA	Libros básicos:					
	Allen Broughton, S.; Bryan, K.: "Discrete Fourier Analysis and Wavelets". Wiley, New Jersey, 2009.					
	Libros de consulta:					
	Gasquet, C.; Witomski, P.: "Fourier Analysis and Applications". Springer Verlag, New York, 1999.					
	Van Fleet, P.J.: "Discrete Wavelet Transformations". Wiley, New Jersey, 2008.					
DECLIDEDS WED	Página web de la asignatura (http://www.dma.fi.upm.es)					
RECURSOS WEB	Sitio Moodle de la asignatura (http://web3.fi.upm.es/AulaVirtual)					
FOLUDAMIENTO	Sala Informática con software matemático.					
EQUIPAMIENTO	Aula					

9. Cronograma de trabajo de la asignatura

	<u> </u>			_		
Semana	Actividades en Aula	Actividades en Laboratorio	Trabajo Individual	Trabajo en Grupo	Actividades de Evaluación	Otros
Semana 1 (5 horas)	Explicación de contenidos teóricos y resolución de ejercicios (2 horas).		Estudio y/o resolución de ejercicios (3 horas).		Entrega y/o resolución de ejercicios en el aula.	
Semana 2 (5 horas)	Explicación de contenidos teóricos y resolución de ejercicios (2 horas).		Estudio y/o resolución de ejercicios (3 horas).		Entrega y/o resolución de ejercicios en el aula.	
Semana 3 (5 horas)		Realización de Proyecto Informático (2 horas).	Realización de Proyecto Informático (3 horas.)			
Semana 4 (5 horas)	Explicación de contenidos teóricos y resolución de ejercicios (2 horas).		Estudio y/o resolución de ejercicios (3 horas).		Entrega y/o resolución de ejercicios en el aula.	
Semana 5 (5 horas)		Realización de ejercicios con software matemático (2 horas).	Estudio y/o resolución de ejercicios (3 horas).			
Semana 6 (6 horas)	Explicación de contenidos teóricos y resolución de ejercicios (1 hora).		Estudio y/o resolución de ejercicios (4 horas).		Examen de ejercicios de respuesta larga (desarrollo) del tema 1 (1 hora).	

Nota: Para cada actividad se especifica la dedicación en horas que implica para el alumno.

Semana	Actividades en Aula	Actividades en Laboratorio	Trabajo Individual	Trabajo en Grupo	Actividades de Evaluación	Otros
Semana 7 (5 horas)	Explicación de contenidos teóricos y resolución de ejercicios (2 horas).		Estudio y/o resolución de ejercicios (3 horas).		Entrega y/o resolución de ejercicios en el aula.	
Semana 8 (5 horas)		Realización de Proyecto Informático (2 horas).	Realización de Proyecto Informático (3 horas).			
Semana 9 (5 horas)		Realización de ejercicios con software matemático (2 horas).	Estudio y/o resolución de ejercicios (3 horas).			
Semana 10 (5 horas)	Explicación de contenidos teóricos y resolución de ejercicios (1 hora).	Realización de ejercicios con software matemático (1 hora).	Estudio y/o resolución de ejercicios (3 horas).		Entrega y/o resolución de ejercicios en el aula.	
Semana 11 (5 horas)	Explicación de contenidos teóricos y resolución de ejercicios (2 horas).		Estudio y/o resolución de ejercicios (3 horas).		Entrega y/o resolución de ejercicios en el aula.	
Semana 12 (5 horas)	Explicación de contenidos teóricos y resolución de ejercicios (2 horas).		Estudio y/o resolución de ejercicios (3 horas).		Entrega y/o resolución de ejercicios en el aula.	
Semana 13 (5 horas)	Explicación de contenidos teóricos y resolución de ejercicios (1 hora).	Realización de ejercicios con software matemático (1 hora).	Estudio y/o resolución de ejercicios (3 horas).		Entrega y/o resolución de ejercicios en el aula.	

Semana	Actividades en Aula	Actividades en Laboratorio	Trabajo Individual	Trabajo en Grupo	Actividades de Evaluación	Otros
Semana 14 (5 horas)		Realización de Proyecto Informático (2 horas).	Realización de Proyecto Informático (3 horas).			
Semana 15 (5 horas)		Realización de ejercicios con software matemático (2 horas).	Estudio y/o resolución de ejercicios (3 horas).			
Semana 16 (5 horas)			Estudio y/o resolución de ejercicios (4 horas).		Examen de ejercicios de respuesta larga (desarrollo) de los temas 2 y 3 (1 hora).	

En total 81 horas : 15 horas de clase, 14 de laboratorio, 50 de trabajo individual y 2 de examen.

